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The topology of the composite flow fields reconstructed by linear superposition of a
two-dimensional boundary layer flow with an embedded laminar separation bubble
and its leading three-dimensional global eigenmodes has been studied. According
to critical point theory, the basic flow is structurally unstable; it is shown that in
the presence of three-dimensional disturbances the degenerate basic flow topology
is replaced by a fully three-dimensional pattern, regardless of the amplitude of the
superposed linear perturbations. Attention has been focused on the leading stationary
eigenmode of the laminar separation bubble discovered by Theofilis et al. (Phil. Trans.
R. Soc. Lond. A, vol. 358, 2000, pp. 3229–3324); the composite flow fields have been
fully characterized with respect to the generation and evolution of their critical points.
The stationary global mode is shown to give rise to a three-dimensional flow field
which is equivalent to the classical U-shaped separation, defined by Hornung & Perry
(Z. Flugwiss. Weltraumforsch., vol. 8, 1984, pp. 77–87), and induces topologies on
the surface streamlines that are resemblant to the characteristic stall cells observed
experimentally.

1. Introduction
The instability of a laminar separation bubble (LSB), embedded inside a boundary

layer and arising as a consequence of an adverse free-stream pressure gradient on a
flat surface, or induced by changes of the surface curvature, constitutes a problem
of prime technological significance: in an aeronautical context related applications
include lifting surfaces, low-pressure turbines and wind-turbine blades. The presence
of a separated shear layer as an integral part of the LSB suggests that the instability
properties of the shear layer should play a decisive role in the reattachment of the
separated boundary layer. The one-dimensionality of the model shear-layer profile
and its resulting amenability to classic, ordinary-differential-equation-based analysis
(Michalke 1964; Blumen 1970 and subsequent work in this ‘local’ vein) has generated a
wealth of knowledge on the problem of shear-layer instability per-se and as applied to
the LSB flow. On the other hand, Gaster postulated (H. Fasel, private communication
November 2004) that, besides paying attention to the amplification of incoming
disturbances by solution of the local instability problem, analysis of LSB flows ‘in
the true sense’ should also be performed, by which a global instability analysis of the
entire separated boundary layer flow is implied.
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In the latter context Allen & Riley (1995) employed absolute/convective instability
analysis (Huerre & Monkewitz 1985, 1990) on two different classes of separated
basic flows, namely a backward-facing slope and a Joukowski airfoil at different
Reynolds numbers. In all cases analysed, they found a strong convective instability,
but no evidence of absolute instability. On the other hand, Hammond & Redekopp
(1998) also employed absolute/convective instability analysis to study perturbations
in a model of LSB flow, the latter constructed using similarity solutions. These
authors determined that absolute instability was present when the peak reversed
flow amplitude, scaled with the far-field velocity, exceeds ∼20 %. Independent
investigations using linear instability theory and/or direct numerical simulations
(DNS) (Rist & Maucher 2002; Fasel & Postl 2004) agree reasonably well with
this threshold for the onset of absolute instability of wave-like disturbances of
the LSB. However, it was Theofilis (2000) and Theofilis, Hein & Dallmann (2000)
who first unequivocally demonstrated the self-excitation potential of LSB flows,
by solving the partial-derivative-based eigenvalue problem pertinent to the (two-
dimensional DNS obtained) separated boundary layer ensuing Howarth’s free-
stream linear deceleration on a flat plate (Briley 1971), without the need to
invoke the assumption of weak non-parallelism of the basic state; at about
the same time, an analogous conclusion was independently reached by Barkley,
Gomes & Henderson (2002) in the LSB formed in the laminar backward-facing step
flow.

In the last decade instability analyses based on solutions of partial-derivative
eigenvalue problems (often referred to as BiGlobal analyses, Theofilis 2003) and/or
DNS have elucidated global instability mechanisms in a variety of LSB flows,
including the aforementioned adverse-pressure-gradient flat-plate flow (Theofilis et al.
2000), backward-facing step flow (Barkley et al. 2002), as well as geometry-induced
separation (Marquillie & Ehrenstein 2003; Gallaire, Marquillie & Ehrenstein 2007),
NACA 0012 airfoil in incompressible (Theofilis, Barkley & Sherwin 2002) and
compressible flow (Crouch, Garbaruk & Magidov 2007), low-pressure-turbine flow
(Abdessemed, Sherwin & Theofilis 2004, 2009), shock-induced separation (Boin et al.
2006; Robinet 2007), open cavity (Åkervik et al. 2007) and S-shaped duct flows
(Marquet et al. 2008, 2009). In all configurations examined consensus has been built
that two different primary instability mechanisms coexist. External disturbances, like
Tollmien–Schlichting (TS) waves, entering the bubble are highly amplified by the
shear layer of the bubble, and then the classical Kelvin–Helmholtz (KH) mechanism
is recovered. In addition, LSB flows have the potential to self-excite an intrinsic
instability mechanism, referred to as the global mode of the bubble, the main
characteristics of which are its stationary and three-dimensional nature (Theofilis
et al. 2000).

The present contribution revisits a BiGlobal analysis of instability of LSB flows on
a flat plate. The substantial increase in computing hardware capabilities in the last
decade, in conjunction with the recent development of massively parallel numerical
solutions of the partial-derivative eigenvalue problem (Rodrı́guez & Theofilis 2009),
permit utilization of orders-of-magnitude higher resolution compared with that
employed a decade ago for the solution of the same problem. Although some reference
is made to the conditions under which self-sustained global instability may appear in
this LSB flow, as well as to the dependence of the global amplification rates on the
parameters defining the LSB flow, the focus of the present work is on application
of critical-point theory to the analysis of the topological bifurcations exerted by the
intrinsic global mode of laminar separation.
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Critical point concepts emerged in the context of fluid flow in the early eighties
of last century and have since become a powerful tool in describing exact local
solutions of the equations of motion; such local solutions may then be used in
order to reconstruct the entire (laminar or turbulent) three-dimensional flow field –
the interested reader is referred to Dallmann (1982), Hornung & Perry (1984), Perry &
Hornung (1984), Perry & Chong (1987) and Dallmann, Vollmers & Su (1997) for the
fundamentals of the reconstruction and classification of separated flow topologies and,
for example, to Vorobieff & Rockwell (1996) for one application of the theory to a
concrete flow control problem. According to critical point theory, the two-dimensional
flow structure of the laminar separated basic field is described by means of centre and
node-saddle points. This topology is defined as a degeneracy, which is only possible
in strictly two-dimensional flows. The small three-dimensional disturbances resulting
from linear analysis will alter the flow topology, independently of the amplitudes
considered, and fully three-dimensional patterns will appear. The objective of the
present work is to investigate the topological changes exerted by the global mode
over the LSB. Unlike Theofilis et al. (2000) where an analogous discussion was
qualitative and based on theoretical arguments presented in earlier works (Dallmann
et al. 1997), the reconstructions of the flow field considered here are quantitative, and
are based on linear superposition of the eigenmodes obtained from the present global
linear instability analysis upon the respective basic state.

The paper is organized as follows: in § 2 the LSB basic flow analysed is described.
§ 3 is devoted to the BiGlobal linear instability analysis. Direct numerical simulations,
performed in order to verify the results of the instability analysis, are presented in
§ 4. The main points of the critical-point theory and its application to the topology
of the disturbed LSB are exposed in § 5. A discussion of the results and qualitative
comparison with experimental work in § 6 closes the present contribution.

2. Basic flow construction
2.1. Inverse formulation of the non-similar boundary-layer problem

A non-similar inverse formulation of the boundary-layer equations on a flat plate was
used to obtain the basic flow. Two-dimensional DNS of the Navier–Stokes equations
used in earlier work (Briley 1971; Theofilis et al. 2000), in which a linear deceleration
of the far-field streamwise velocity was imposed in order to force the appearance
of the LSB, were dismissed in the present context. In choosing the current non-
similar boundary-layer formulation, the appearance of the bubble shedding as the
peak reversed flow increases is circumvented in the computation of the basic flow
and may be subsequently recovered as one (or more) global eigenmodes of this basic
flow.

The physical dimensional streamwise, wall-normal and spanwise coordinates are
denoted as x∗, y∗ and z∗, respectively; the far-field velocity is U ∗

e , the streamfunction
is Ψ and the kinematic viscosity is ν. The non-dimensional boundary-layer variables

ξ = x∗/L, η = y∗√U ∗
e / νx∗, (2.1)

and transformed streamfunction

f (ξ, η) = Ψ/
√

U ∗
e νx∗ (2.2)

are introduced into the streamwise momentum equation in order to obtain an equation
in the transformed streamfunction f (ξ, η). The streamwise length L is an arbitrary
quantity used to make x∗ dimensionless. In order to recover separated states, the
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Reyhner and Flügge-Lotz (FLARE) approximation (Cebeci & Cousteix 2001) has
been invoked, which neglects the streamwise convective term when reversed flow
exists. The boundary-layer equation is written as

fηηη +
m + 1

2
ffηη + m(1 − f 2

η ) = ξ (θfηfξη + fηηfξ ), (2.3)

where subscripts imply partial differentiation, and m =(ξ/U ∗
e )(dU ∗

e /dξ ) is the
deceleration parameter, which is variable with ξ . The FLARE approximation appears
in this equation as the function

θ =

{
1, fη � 0,

0, fη < 0.
(2.4)

This problem is solved subjected to the boundary conditions

f (ξ, 0) = 0, fη(ξ, 0) = 0 and fη(ξ, η → ∞) → 1. (2.5)

If (2.3) were solved in a direct context, the far-field deceleration would be fixed
and the distribution m(ξ ) would be imposed, which would lead to the well-known
Goldstein singularity at separation. On the other hand, inverse formulations, such
as the one used herein, in which the wall shear or the displacement thickness are
imposed, can recover separated states. Here, the displacement thickness measured in
the transformed variable η is imposed as the boundary condition

f (ξ, η → ∞) → 1 − δ̄(ξ ). (2.6)

The complete derivation of the equation and boundary conditions can be found in
Cebeci & Cousteix (2001), while further details on the solution procedure have been
presented by Rodrı́guez & Theofilis (2008).

2.2. The boundary-layer-based LSB model basic flow

The two-dimensional LSB basic state q̄, appearing in (3.1) in what follows, is
constructed using the calculated transformed streamfunction f (ξ, η) (defined in (2.2)).
The streamwise and wall-normal dimensional velocity components are obtained using
the transformations (2.1) and (2.2):

u∗ = U ∗
e · fη, (2.7)

v∗ =
1

2

√
U ∗

e ν

ξ

[
f (m + 1) + 2ξfξ + ηfη(m − 1)

]
. (2.8)

Lengths here are scaled using the dimensional displacement thickness at the inflow
boundary δ∗

in , while the physical streamwise and wall-normal velocity components u∗

and v∗, and their first derivatives are made dimensionless using the inflow far-field
velocity, U ∗

e and δ∗
in . The non-dimensional spatial variables are denoted by x and

y and the dimensionless velocities by ū and v̄. These velocity components, along
with their first spatial derivatives, constitute the basic flow for the BiGlobal instability
analysis presented in § 3. Note that the basic flow is two-dimensional and the spanwise
velocity w̄ = 0.

The domain on the flat plate is chosen such that the Reynolds number based on this
displacement thickness at inflow is Rein = 450, and that at the outflow is Reout = 700.
The domain box is Ω = Lx × Ly = (152, 370) × (0, 40). A larger domain box was also
computed in order to accommodate a fringe region at the outflow for the DNS, as
explained in § 4.
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δ̄max xsep xreat LLSB τmin xτmin
urev (ωi)max × 103

3.25 229.9 255.0 25.1 −0.061 247.2 1.11 −0.136
3.5 228.1 257.1 29.0 −0.076 249.9 1.70 −0.102
4 226.1 260.0 33.9 −1.063 253.8 2.78 −4.938
4.5 224.6 261.9 37.3 −1.375 256.6 3.73 −2.691
5 223.7 263.1 39.4 −1.701 258.7 4.57 −1.480
6 223.2 264.7 41.5 −2.385 261.3 6.00 −2.411
7 221.6 265.8 44.2 −3.094 262.8 7.16 +3.439
8 221.0 266.3 45.3 −3.854 263.9 8.14 +6.791

Table 1. Characteristic parameters of the laminar separation bubble models.

An analytical displacement thickness distribution analogous to that prescribed
by Carter (1975) is used for (2.6), in which δ̄ starts at the Blasius value at the
inflow boundary, is increased within a finite x-range until a maximum thickness δ̄max

is attained, is then decreased until the Blasius solution is again recovered and is
maintained constant until the outflow boundary:

δ̄(x) = (δ̄max − δ̄B) · [S(ξ1) − S(ξ2)] + δ̄B, (2.9)

where

S(ξ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ξ < 0,[
1 + exp

(
1

ξ − 1
+

1

ξ

)]−1

, 0 � ξ � 1,

1, 1 < ξ,

(2.10)

and the auxiliary non-dimensional coordinates ξ1 and ξ2 are defined as

ξ1 = a
2(x − 210)

264 − 210
, ξ2 = a

2x − 210 − 264

264 − 210
. (2.11)

The coordinates x = 210 and x = 264 define, respectively, the locations where the
increase of displacement thickness starts and ends. The parameter (a) is used to
determine the maximum slope of S, and was fixed at a =0.65. While delivering
displacement thickness distributions which are analogous to the piecewise polynomial
distributions used in Carter (1975) and Rodrı́guez & Theofilis (2008), the present
function has the advantage of continuous derivatives of all orders. These distributions
are a variation of the typical fringe function used in the formulation of DNS proposed
by Lundbladh et al. (1994). The value δ̄max acts as a parameter defining the strength of
the LSB in terms of both wall-normal extension and reversed flow, and δ̄B = 1.72078
is the displacement thickness corresponding to the Blasius velocity profile. As a result
of this choice of the parameter (a), the actual maximum displacement thickness of
the bubble is δmax ≈ 0.96 × δ̄max .

Table 1 summarizes the characteristic parameters for the series of basic flows
considered: the parameters appearing are the maximum displacement thickness of the
model δ̄max , the primary separation location xsep , the primary reattachment location
xreat , the streamwise length of the basic bubble LLSB , the peak scaled wall shear
τ = fηη, the location of the peak wall shear xτmin

and the peak reversed flow, scaled with
the inflow free-stream velocity urev = u∗

rev/U ∗
e . The last column shows the maximum

amplification rate predicted by the BiGlobal analysis for each case, as will be discussed
in § 3.
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Figure 1. (a) Transformed wall-shear (τ = fηη) distributions for five LSBs.
(b) The zoomed separated region.

The distributions of wall shear for five representative cases are shown in figure 1. In
the cases where δ̄max is low the wall-shear distribution within the separated region is
nearly symmetric, attaining the minimum value near the midpoint between separation
and reattachment. The location of the peak wall shear is related to the location of the
centre of the recirculation region. As δ̄max is increased the peak wall shear is increased
and displaced downstream, and therefore the vortex centre moves downstream.

A peak of wall shear appears in the separated region, the magnitude of which is
also increased with the size of the bubble. This evolution defines topological changes
of the basic LSBs that can be explained as the appearance of an inflection point in
the wall-shear distribution. As will be shown later, the topology of the basic LSB is
found to have an important effect in the instability characteristics of the global mode.
Also is worth of mention the overshoot in the recovery of the zero-pressure-gradient
wall shear. This overshoot is a typical issue of inverse formulations of the boundary
layer problem (Carter 1975) and formulations considering viscous-inviscid iteration
(Cebeci, Keller & Williams 1979; Allen & Riley 1995).

3. Direct and adjoint BiGlobal instability analyses
3.1. The BiGlobal eigenvalue problems

The equations governing the two-dimensional eigenvalue problems solved are
presented here for completeness. A solution q(x, y, z, t)= [u, v, w, p]T to the
incompressible equations of motion is decomposed into

q(x, y, z, t) = q̄(x, y) + εq̂(x, y) exp(iΘ) + c.c., (3.1)

where Θ = βz − ωt , ε � 1, q̄ indicates the basic flow calculated in § 2, q̂ indicates
modal disturbances, c.c. denotes complex conjugate, β is a real wavenumber related
to the spanwise periodicity length through Lz = 2π/β and ω is the complex eigenvalue
sought. The real part of the eigenvalue, ωr , is the circular frequency of the
eigenmode, while the imaginary part, ωi , is its temporal amplification rate. The
decomposition is introduced into the incompressible continuity and Navier–Stokes
equations. Linearization about the basic flow follows, based on the smallness of ε,
and the basic flow terms are subtracted out, as they satisfy the equations of motion
to the degree discussed in the previous section; further verification of the basic flow
model will be provided in § 4, which deals with the DNS work. The following system
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of equations for the determination of q̂ results:

Dxû + Dy v̂ + iŵ = 0, (3.2)

[L − (Dxū)]û − (Dyū)v̂ − Dxp̂ = −iωû, (3.3)

−(Dx v̄)û + [L − (Dy v̄)]v̂ − Dyp̂ = −iωv̂, (3.4)

Lŵ − iβp̂ = −iωŵ, (3.5)

where L =(1/Re)(D2
x +D2

y −β2)− ūDx − v̄Dy , Dx = ∂/∂x, and Dy = ∂/∂y. The system
of equations (3.2)–(3.5), complemented by the boundary conditions discussed below,
constitutes an eigenvalue problem for the complex eigenvalue ω, defined in the two-
dimensional domain Ω .

The non-normality of the linearized Navier–Stokes equations results in the non-
normality of the eigenfunction basis obtained as solution of the (direct) eigenvalue
problem (3.2)–(3.5). If an eigenfunction expansion of the disturbance field is sought,
the definition of the adjoint problem is necessary in order to introduce a bi-
orthogonality condition between the different eigenmodes (Morse & Feshbach 1953;
Salwen & Grosch 1981; Tumin 2003). Applying the usual inner product for complex
functions

〈a, b〉 =

∫
Ω

aH · b dΩ, (3.6)

where the superscript denotes transposed complex–conjugate to the linear problem
N(q̄) · q̂ = 0 defined by (3.2)–(3.5), the following Green’s identity (Morse & Feshbach
1953) is built:

〈q̃, N(q̄) · q̂〉 = [〈ṽ, v̂〉]t0 + [J(q̃, q̂)]∂Ω − 〈N†(q̄) · q̃, q̂〉. (3.7)

The term N†(q̄) · q̃ = 0 inside the inner product at the right-hand side defines the
adjoint problem, where q̃ = (ũ, ṽ, w̃, p̃)T is the vector of adjoint variables. The adjoint
operator N†(q̄) is derived by integration by parts, and yields the adjoint eigenvalue
problem

Dxũ + Dy ṽ − iβw̃ = 0, (3.8)

[L† − (Dxū)]ũ − (Dx v̄)ṽ − Dxp̃ = −iω̃ũ, (3.9)

−(Dyū)ũ + [L† − (Dy v̄)]ṽ − Dyp̃ = −iω̃ṽ, (3.10)

L†w̃ + iβp̃ = −iω̃w̃, (3.11)

where L† = (1/Re)(D2
x + D2

y − β2) + ūDx + v̄Dy , and ω̃ is the adjoint eigenvalue. In
this context, the adjoint eigenmodes are defined as

q̃+(x, y, z, t) = q̃(x, y) exp[i(βz + ω̃t)]. (3.12)

A solvability condition for the adjoint problem is obtained by enforcing that the
bracketed terms in (3.7) vanish:

[〈ṽ, v̂〉]t0 + [J(q̃, q̂)]∂Ω = 0. (3.13)

The second term in (3.13) imposes the conservation of the bi-linear concomitant
(Hill 1995; Dobrinsky & Collis 2000) in the domain, and determines the boundary
conditions for the adjoint problem on account of the boundary conditions for the
direct problem.

Taking into account the intrinsic nature of the global mode of LSBs (Theofilis et al.
2000), Dirichlet boundary conditions are imposed on the disturbance components at
inflow for the direct problem. Linear extrapolation is imposed at the outflow, as
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the physical behaviour of the disturbances is not known a priori. Consistently with
the solvability condition, the inflow and outflow boundary conditions are inverted
in the adjoint problem, i.e. Dirichlet homogeneous boundary conditions are used at
the outflow and linear extrapolation at inflow. The velocity components of both the
direct and adjoint eigenfunctions are imposed to vanish at the wall due to the no-slip
condition. At the far field, the velocity and pressure disturbances are also forced to
vanish. This last assumption is made on account of the exponential decay of the
global modes along the wall-normal direction, and permits accurate recovery of this
part of the eigenspectrum, although it is not necessarily adequate for the TS waves,
and certainly is not justified for the continuous part of the spectrum (neither of which
are of interest here). A compatibility condition is derived from the Navier–Stokes
equations for ∂p̂/∂y and is imposed for the pressure perturbation at the wall.

The direct and adjoint eigenvalue problems can be written in the form

Aq̂ l = −iωlBq̂ l and (3.14)

A†q̃m = −iω̃mBq̃m, (3.15)

where (ωl, q̂ l) and (ω̃m, q̃m) are the direct and adjoint eigenpairs, respectively.
Substituting (3.14) and (3.15) into (3.7), and taking into account the set of boundary
conditions presented above, the solvability condition (3.13) yields the bi-orthogonality
condition

0 = (−iωl − (−iω̃m)H )〈q̃ l , Bq̂m〉. (3.16)

Because of the inner product and Ansatz chosen in the development of the
equations, ωr = −ω̃r and ωi = ω̃i . The bi-orthogonality condition (3.16) imposes that
the inner product of the adjoint and direct eigenvectors be equal to zero if l 
= m,
i.e. when they do not correspond to the same eigenmode. In the case l = m, the
term in parenthesis vanishes and the inner product is non-zero. It can be shown
(Salwen & Grosch 1981; Hill 1995) that if the eigenspectrum is complete, an arbitrary
disturbance can be expressed as a linear combination of the direct eigenfunctions. The
contribution of the disturbance to a discrete eigenmode l is obtained as the projection
of the disturbance on the adjoint eigenfunction q̃ l using the condition (3.16), with an
adequate normalization. Accordingly, the adjoint eigenfunctions describe the spatial
regions of higher receptivity of the eigenmode to initial disturbances and external
forcing, thus permitting the derivation of theoretically-founded active flow control
strategies (Theofilis 2009). In the present context, solution of the adjoint eigenvalue
problem alongside the concept of structural sensitivity, introduced in § 3.3, will aid
in determining the circumstances under which the topologies exerted by the global
mode can be realizable.

3.2. Numerical methods

The direct and adjoint eigenvalue problems constitute two generalized eigenvalue
problems that are qualitatively identical, and in consequence the same numerical
method is used for their independent solution. The two-dimensional partial-derivative-
based system of equations (3.2)–(3.5) or (3.8)–(3.11) were discretized using Chebyshev–
Gauss–Lobatto points in both of the x and y spatial directions. An algebraic mapping
was used in the wall-normal direction in order to cluster points in the vicinity of the
wall. After discretization, the systems of equations can be recast in the form

AX = ωBX, (3.17)
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Problem Domain size Resolution ωi × 103

Direct (180, 350) × (0, 35) 340 × 90 −4.93855
Direct (152, 370) × (0, 40) 340 × 90 −4.93828
Direct (152, 390) × (0, 40) 340 × 128 −4.93845
Adjoint (152, 370) × (0, 40) 340 × 90 −4.93606

Table 2. Results of the convergence test for different resolutions and domain sizes.
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Figure 2. Streamwise û (a) and spanwise ŵ (b) velocity components of the direct eigenfunction
corresponding to the leading stationary eigenvalue for the case δ̄max =4, attained for β = 0.3.

where the matrix A corresponds to either of the discretized operators A or A†, and
B corresponds to −iB. The Arnoldi algorithm with zero shift is used to recover a
window of the complete eigenspectrum, whereby instead of (3.17), the problem solved
is

ĀX = µX, where Ā = A−1B, µ =
1

ω
. (3.18)

The Arnoldi iteration generates a Krylov subspace of dimension m, and a
Hessenberg matrix with dimension m × m, whose eigenvalues, obtained using the QZ
algorithm, are approximations to those of the original eigenvalue problem. Taking
advantage of the near-diagonal structure of the matrix B, only the left-hand-side
matrix A is formed and stored. Dense linear algebra operations are used; in this
context the memory requirements are well beyond the possibilities of a serial solution,
requiring storage of and operating with matrices of O(105) leading dimension. A
parallel implementation of the algorithm is employed to make use of massively
distributed memory architectures (Rodrı́guez & Theofilis 2009). The largest resolution
employed in the present analyses was 340 × 128 collocation points with Krylov
subspace dimension m =200, requiring upwards of 460 Gbytes of memory and taking
nearly four hours of wall-clock time on JUGENE (www.fz-juelich.de/jsc/jugene) for
the solution of the eigenvalue problem at one value of the parameter β . Note that
convergence of the eigenvalue is attained using a lower resolution, as shown in table 2.

3.3. Convergence studies and sensitivity of the eigenvalues

Several convergence tests have been performed, and the results for the representative
case δ̄max = 4 and β = 0.3 are summarized in table 2. Using 340 × 90 collocation points
in the baseline case, in which the full domain Lx × Ly = (152, 370) × (0, 40) has been
considered, the eigenvalue of the global mode – subject of the topological analysis that
follows – is converged to within a relative error of 10−3 (absolute error of 10−6). The
direct and adjoint eigenfunctions are shown respectively in figures 2 and 3. It should
be noted that for two-dimensional basic flows with w̄ 
= 0 the change of variable
q = (u, v, w, p)T → (u, v, iw, p)T transforms the complex eigenvalue problems (3.2)–
(3.5) and (3.8)–(3.11) to real arithmetic (Theofilis 2003). With this transformation,
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Figure 3. Streamwise ũ (a) and spanwise w̃ (b) velocity components of the adjoint
eigenfunction corresponding to the leading stationary eigenvalue for the case δ̄max =4, attained
for β = 0.3.

the eigenvectors associated with real (stationary) eigenvalues, like the eigenmode
considered here, are also real and then the spanwise velocity component ŵ (or
w̃) is orthogonal to û and v̂ (respectively ũ and ṽ). In agreement with boundary-
layer theory, the wall-normal velocity components are an order-of-magnitude smaller
than the horizontal ones, and are not shown in the figures. As shown in Theofilis
et al. (2000), the spatial structure of the direct eigenfunctions is centred inside the
recirculation region and extends downstream, while the new result here concerns
the adjoint eigenfunctions, which extend upstream. Furthermore, the maximum
amplitude in the direct eigenfunctions is attained in the streamwise velocity component
û, while that in the adjoint eigenvector is attained in its spanwise component w̃.

The concept of sensitivity of the eigenvalues is employed here in order to determine
the drift of the leading eigenvalue due to the combination of domain size and
boundary conditions. It can be shown (Schmid & Henningson 2001; Luchini 2003;
Chomaz 2005; Giannetti & Luchini 2007) that the eigenvalue drift δωl due to a
spatially localized perturbation δA0 of the linear operator A, comprising variations of
the basic flow and boundary conditions, has an upper bound defined by

δωl � ‖δA0‖ sl(x, y), where sl(x, y) =
‖q̃ l‖ · ‖q̂ l‖
〈q̃ l , Bq̂ l〉

. (3.19)

The function sl(x, y), different for each eigenmode, determines the spatial locations
where perturbations of either the basic flow or the boundary conditions have the
largest effect on the resulting eigenvalue. The maxima of sl are the locations at which
a higher coupling between the respective direct and adjoint eigenfunctions exists.
The structure of the direct-adjoint coupling function s for this eigenmode, shown in
figure (4a), is highly localized inside the recirculation region.

Giannetti & Luchini (2007) noted that the sensitivity of the eigenvalue to the
size of the computational domain, or equivalently to the boundary conditions, can
be predicted by considering the spatial structure of s. In particular, the eigenvalue
drift (3.19) caused by the domain truncation and choice of boundary conditions will
be, at most, of the same order of magnitude as s. Contours of log10(s) are shown
in figure (4b) along with the boundaries of the smaller domain considered for the
convergence test (table 2). The maximum value of s at the boundaries of the smaller
domain is O(10−5), while the difference on the computed eigenvalues is O(10−7).
Consequently, the eigenvalue is recovered accurately both within the baseline and the
smaller domain Lx × Ly = (180, 350) × (0, 35) shown in figure 4.

3.4. BiGlobal linear instability results and their structural sensitivity

Stability analyses were performed for the range of spanwise wavenumbers β ∈ [0, 1.5],
corresponding to periodicity lengths varying from the two-dimensional case Lz → ∞
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Figure 4. Contours of the direct-adjoint coupling function s (a) and log10(s) (b) corresponding
to the leading stationary eigenvalue for the case δ̄max =4, attained for β = 0.3. The white lines
show the boundaries of the smaller domain considered in the convergence test.
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Figure 5. Dependence of the growth rate of the leading stationary global mode with the
spanwise wavenumber β for different laminar separation bubbles.

to Lz ≈ 4, an order of magnitude smaller than the streamwise extension of the LSBs
considered. The dependence of the growth rate ωi of the stationary global mode
with the spanwise wavenumber β for some of the LSBs defined in table 1 is shown
in figure 5. In the case of the weakest bubble, δ̄max = 3.25, the least damped mode
corresponds to β = 0.15. As the separation bubble becomes stronger, the spanwise
wavenumber β ≈ 0.3 becomes dominant. The dominant eigenmode is increasingly
less damped with stronger separation bubbles, and eventually it becomes unstable for
δ̄max ≈ 7, concurrently with the appearance of a second dominant wavenumber β ≈ 1.

As can be seen in table 1, the appearance of a self-excited global mode in the
present context occurs at a level of recirculation of urev ≈ 6 %–7 %, consistently with
earlier BiGlobal results and in contrast with the substantially higher values delivered
by absolute/convective analysis (Hammond & Redekopp 1998). The structure of the
eigenfunctions corresponding to the leading eigenmode for the different basic flows
is qualitatively identical to the one shown in figures 2 and 3, and exhibit the same
characteristics of those known from earlier work on the flat plate (Theofilis et al.
2000) and from instability analysis of related flows (Theofilis et al. 2002; Gallaire
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et al. 2007; Robinet 2007; Abdessemed et al. 2009; Kitsios et al. 2009; Marquet et al.
2009).

The leading stationary global mode has been encountered to be stable for all the
range of wavenumber β for LSB models with δ̄max � 7, and temporally amplified
for a range of finite spanwise wavenumbers if δ̄max � 7. The maximum receptivity
to external perturbations of the flow, characterized by the adjoint eigenfunctions, is
located at a spatial region near the basic flow separation line, extending upstream
beyond the inflow boundary, as can be seen in figure 3. The concept of structural
sensitivity (Giannetti & Luchini 2007), introduced as a physical interpretation of
the eigenvalue sensitivity, states that the mechanism responsible for a self-excited
eigenmode acts in the spatial regions defined by s. Consequently, perturbing the flow
in the regions of highest sensitivity produces the largest eigenvalue drift. Provided
that the growth/damping rates are O(10−3), the results on log10(s) in figure (4b) show
that small perturbations of the basic flow in the region of highest sensitivity, would
suffice to displace the eigenvalue up to the point of changing its sign and thus alter its
instability behaviour from stable to unstable. In this context, the topological changes
exerted by the stationary global mode, as described in § 5.3, can exist either as a
result of a self-excited (unstable) or as a continuously excited (stable) disturbance.
Incidentally, the same information on structural sensitivity can also be used in order
to devise efficient passive flow control strategies, as shown in the case of the cylinder
by Giannetti & Luchini (2007).

4. Direct numerical simulation
4.1. Numerical method

The results of the BiGlobal instability analysis have been verified by linear
and nonlinear three-dimensional DNS monitoring the linear development of the
disturbance velocity components associated with the stationary leading global mode.
The DNS code is a modification of that of Lundbladh et al. (1994) and has also been
used by Theofilis et al. (2003) in the verification of the polynomial modes of swept
Hiemenz flow. It considers a velocity–vorticity formulation of the incompressible
continuity and Navier–Stokes equations. Chebyshev polynomials are used for the
wall-normal direction; here a mapping and domain extension identical with those
used in the stability analysis have been implemented in the DNS code. A Crank–
Nicholson scheme is used for the time advancement of the viscous terms while a
third-order Runge–Kutta scheme is used for the nonlinear terms.

The two horizontal directions are considered homogeneous and treated as periodic
with a Fourier discretization. However, this is only consistent for the spanwise
direction z. In order to obtain periodicity in the streamwise direction, a fringe-
region technique (Spalart 1988) is used, consisting of adding a linear damping term
to the governing equation

∂v

∂t
+ S(v̄, v) = f (x)(V − v), (4.1)

where v = (u, v, w)T is the disturbance velocity, S is the spatial operator, v̄ is the
frozen basic flow, and f (x) is the fringe function. The right-hand-side term in (4.1)
forces the solution v towards V . The function V can be arbitrarily chosen in order to
introduce inflow boundary condition or forcing terms. In line with the homogeneous
Dirichlet boundary conditions imposed in the BiGlobal eigenvalue problem, for the
present computations the value of V is set to be identically zero. The fringe function
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f (x) is chosen to minimize the influence of the fringe region on the physically relevant
part of the domain:

f (x) = f̂ S(ξ ), where ξ =
x − xstart

∆
. (4.2)

The parameter f̂ defines the magnitude of the fringe function, while the parameters
xstart and ∆ define the shape of the function. The function S(ξ ) used here is identical
with that used in the definition of the basic flow displacement thickness distribution
(2.10).

4.2. Initial and boundary conditions

Direct numerical simulations were performed in the three-dimensional computational
boxes Lx × Ly × Lz = (152, 390) × (0, 40) × (0, 2πn/β), with n= 1, n= 2 and n= 5
respectively, containing n complete spanwise wavelengths of the dominant eigenmode.
A resolution of (Nx × Ny × Nz) = (360 × 128 × 32) spectral points has been used in
the streamwise, wall-normal and spanwise spatial directions, respectively. The fringe
region is defined within x ∈ [370, 390] and is resolved by 34 Fourier collocation nodes.
An additional basic flow and linear instability analysis with a longer domain were also
computed; as seen in the third row of results in table 2, the effect of this modification
on the damping rate is negligible. For consistency with the BiGlobal instability
analysis, the same basic flows v delivered by the boundary-layer approximation are
used here too, and are kept frozen in the computation. The DNS was initialized by
the scaled amplitude functions of the disturbance velocity components corresponding
to the leading stationary global eigenmode at a given small amplitude ε = 10−2.
Consistently with the BiGlobal instability analyses, vanishing of the disturbance
velocity was imposed at the wall and at the far field, while adequate Neumann
boundary conditions were derived for the disturbance vorticity components.

Two different methods have been used in order to extract the growth/damping
rates from the DNS. The first method considers a measure of the kinetic energy at a
given wavenumber kz in the spanwise Fourier expansion, defined as

E(kz, t) =
1

L′
x

∫ Ly

0

[∫ L′
x

0

1

2
v2

]
dy, (4.3)

where the streamwise extension L′
x is selected such that the influence of the fringe

region be negligible. The dominant growth rate for the specific wavenumber kz = β

is calculated from the time signal of E(kz, t): the time derivative is computed using
(first-order) two-point backward finite differences at each time step, resulting in
a near-constant approximation of the amplification/damping rate, 2ωi; finally, an
average of the latter quantity over the simulation time is calculated. The selection of
the length L′

x for the energy integral being arbitrary, a second method has also been
used, that overcomes this uncertainty. The evolution of the maximum magnitude of
the spanwise disturbance velocity component in the entire domain, max{‖ŵ‖}, is also
monitored and the growth/damping rate is extracted in an analogous manner from
its averaged time derivative.

4.3. Validations: linear and nonlinear DNS runs

The basic flow corresponding to δ̄max = 4 along with its leading stationary global
mode, which is stable at the spanwise wavenumber β = 0.3, is considered for the
validation of the results of the instability analysis. Note that this case is the same
considered for the convergence test shown in § 3. The results are summarized in table 3;
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Case n = βLz/2π ωi,DNS,Ê × 103 ωi,DNS,ŵ × 103

Linear 1 −4.762 −4.965
Linear 2 −5.029 −4.910
Linear 5 −4.991 −4.898
Nonlinear 1 −4.447 −4.938

Table 3. Temporal growth/damping rates, relative to the leading stationary global mode for
the case δ̄max = 4 and β = 0.3, extracted from three-dimensional direct numerical simulations.

shown are four different simulations, three of which were performed neglecting the
nonlinear terms and considering different spanwise extensions, while in the fourth
simulation the nonlinear terms were re-instated. A noticeable dispersion is observed
on the recovered damping rate values when using the kinetic energy approach, while
all results are consistent with the value predicted by the instability analysis. This is
attributed to two effects, firstly the arbitrariness in the choice of L′

x and the potential
for the fringe region to contaminate the results and secondly the fixed resolution in
the spanwise spatial direction. The agreement between eigenvalue problem and DNS
results is improved substantially when the peak spanwise velocity is considered: the
largest absolute error between the results of table 3 with the linear theory result,
ωi,LST = −4.93845 × 10−3, is ≈ 4 · 10−5, while the maximum relative error is 0.8 %.

5. Structural changes exerted by the stationary global mode
5.1. Topological considerations

The organized structures in a flow field can be characterized through the identification
of the physical locations where the velocity vanishes (i.e. critical points), the behaviour
of the streamlines in the vicinity of these points, and the manner in which the critical
points are connected by the dividing streamlines. An exhaustive description of the
theory of critical points for compressible three-dimensional unsteady laminar or
turbulent flows can be found in several sources (Dallmann 1982; Hornung & Perry
1984; Perry & Hornung 1984; Perry & Chong 1987; Chong, Perry & Cantwell 1990;
Dallmann et al. 1997); for completeness, the main aspects concerning incompressible
flows are summarized next.

A general three-dimensional flow field is expressed by the vector field v =(u, v, w)
defined on the coordinate system x = (x, y, z). Critical points are defined as the spatial
locations where the three components of the velocity are equal to zero and the slope
of the streamlines is undetermined. The flow field then can be locally expanded
around the critical points using Taylor series. Considering only the linear terms in
the expansion, the local behaviour of the streamlines is determined by the Jacobian
matrix J: ⎛

⎜⎝
ẋ

ẏ

ż

⎞
⎟⎠ =

⎛
⎜⎝

j11 j12 j13

j21 j22 j23

j31 j32 j33

⎞
⎟⎠

⎛
⎜⎝

x

y

z

⎞
⎟⎠ , (5.1)

where jij are real constants, and the critical point has been set as the origin of the
coordinate system. In the case of free-slip points, i.e. critical points in the absence
of a solid wall, jij are the elements of the rate-of-deformation tensor evaluated at
the origin, (x, y, z) = (0, 0, 0). A second type of critical points (denominated no-slip
points) exists, in which the slope of the streamlines is undetermined on a solid wall.
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Equation (5.1) can still be used for characterizing the properties of no-slip critical
points, introducing (̇ ) = d( )dτ . The transformed time variable τ is defined by dτ = ydt

where y is the wall normal coordinate. The elements of the Jacobian matrix no longer
correspond to the rate-of-stress tensor, but second derivatives of its elements in y (e.g.
j11 = ∂2u/∂x∂y + ∂2v/∂x2). The limit y → 0 defines the surface streamlines or lines of
surface shear stress.

In the most general case there are three planes containing solution trajectories
originating at the critical point. These planes are defined as the eigenvector planes
of the Jacobian matrix. Let λ be the eigenvalues of the Jacobian, satisfying the
characteristic equation

λ3 + Pλ2 + Qλ + R = 0, (5.2)

where P, Q and R are the scalar invariants of the Jacobian matrix,

P = −(j11 + j22 + j33), (5.3)

Q =

∣∣∣∣∣ j11 j12

j21 j22

∣∣∣∣∣ +

∣∣∣∣∣ j11 j13

j31 j33

∣∣∣∣∣ +

∣∣∣∣∣ j22 j23

j32 j33

∣∣∣∣∣ (5.4)

and

R = −

∣∣∣∣∣∣∣
j11 j12 j13

j21 j22 j23

j31 j32 j33

∣∣∣∣∣∣∣ . (5.5)

The invariant P is the divergence of the velocity field, which is identically equal
to zero due to incompressibility. The cubic characteristic equation (5.2) can have (i)
three different real roots, (ii) all real roots with at least two of them equal and (iii)
one real- and a pair of complex roots. Real and complex solutions are separated in
the Q–R space by the curve

S1 = 27R2 + 4Q3 = 0. (5.6)

Complex eigenvalues are associated with S1 > 0 and real eigenvalues with S1 < 0.
In the most general case the eigenvectors are non-orthogonal. The Jacobian matrix
J can be transformed to another matrix J′ with the same eigenvalues through the
transformation

x ′ = T · x (5.7)

in which the eigenvectors are orthogonal and where the new coordinates x ′ are
measured in the direction of the eigenvectors. The transformed Jacobian

ẋ ′ = J′ · x ′ (5.8)

is then said to be in canonical form. The study of the local trajectories of the
streamlines is more conveniently done in the canonical form. The solution trajectories
in the direction of an eigenvector associated with a real positive (negative) eigenvalue
are expelled from (attracted to) the critical point. When a pair of complex eigenvalues
exists, the streamlines describe spiral trajectories in the plane defined by the two
eigendirections. The real parts of the eigenvalues determine whether the streamlines
are attracted or repelled by the critical point. Once the location and classification of
the critical points is known, the streamlines connecting the critical points completes
the description of the flow field.

The classification of the critical points in a three-dimensional flow field can be done
in two ways. The first possibility is to consider the type of critical point arising from
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x–y x–z y–z R Q S1

B1 S – – 0 < 0 < 0
B2 S – – 0 < 0 < 0
B3 C – – 0 > 0 > 0

L1/H1 S S N(u) > 0 < 0 < 0
L2 S N(s) S < 0 < 0 < 0
L3 S N(u) S > 0 < 0 < 0
L4/H4 S S N(s) < 0 < 0 < 0
L5 F(u) S S > 0 – > 0
L6/H6 F(s) S S < 0 – > 0

H35d S NF S > 0 < 0 = 0
H35 S F(u) S > 0 < 0 > 0

Table 4. Classification of critical points according to the projection on the coordinate planes
and the location on the Q–R plane. S: saddle; C: centre; N: node; F: focus; NF: Node focus;
(s): stable; (u): unstable. Points named with ‘B’, ‘L’ and ‘H’ correspond to the basic flow, lower
disturbance amplitude and higher disturbance amplitude topologies, respectively.

three cross-sections or projections onto the coordinate planes: two real eigenvalues
with the same sign define a node, two real eigenvalues with opposite sign define a
saddle point, and a pair of complex eigenvalues defines a focus – if the real part is
different from zero – or a centre. The three-dimensional critical point is then defined in
terms of ‘triads’ (e.g. node-saddle-saddle). Erroneous classifications are possible using
this methodology, if the sectional planes are not adequately selected. The second
method of identification of critical points uses the values of the invariants R and Q,
and the relative location of the curve S1 to classify the triads. This method avoids the
possibility of errors in the classification of the critical points, but the physical insight
of the critical point and connecting streamlines is less apparent. In accordance, both
methodologies are employed in this paper. The classification of the critical points
appearing in the paper is summarized in table 4.

The sectional streamlines, or streamlines on cross-sections, are also useful in the
identification of swirling motions. Critical points appear in the cross-sections which
are not critical points of the three-dimensional flow as the velocity normal to the plane
does not vanish. However, they provide information on how the spiralling streamlines
behave.

The structures of two different flow fields are said to be topologically equivalent if
the classification and connections of the critical points are identical, even though the
velocity magnitudes or critical point locations are different. Nevertheless, bifurcations
in the topology description can appear under small changes in the flow field. ‘Local’
bifurcations are those related to (i) the appearance or disappearance of critical
points, or (ii) changes in the eigenvalue classification of the local Jacobian. ‘Global’
bifurcations are related with changes in the streamline connections between critical
points. The borderline topology between two different topology descriptions is said
to be structurally unstable (Guckenheimer & Holmes 1983). This can be due to
either critical points where at least one eigenvalue is λ=0 (‘local degeneracy’) or
saddle-to-saddle connections (‘global degeneracy’). In any case, a random small
perturbation on the structurally unstable flow field will alter the description of the
topology.
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Figure 6. Streamlines of the basic flow for δ̄max = 3.25. (a) Plane z = 0, (b) plane y = 0.

5.2. Topology of the two- and three-dimensional laminar separation bubble flows:
general remarks

The streamlines corresponding to a representative basic flow are depicted in figure 6.
The case considered was δ̄max = 3.25, but all the basic flows shown in table 1 are
topologically equivalent, and the arguments presented in this section are valid for
any LSB flow. The basic flow is two-dimensional and homogeneous in the spanwise
direction: the velocity w̄ and its derivatives with respect to x and y, as well as all flow
derivatives with respect to z are equal to zero. Consequently the only non-zero terms
in the Jacobian matrix are j11, j12, j21 and j22, while the invariant R = 0. According to
boundary-layer theory, in the vicinity of the wall ∂/∂x � ∂/∂y, and v � u. Separation
and reattachment occur in two no-slip critical points (denominated B1 and B2 in
table 4) on the vertical plane Oxy, where j12 ∼ ∂2u/∂y2 > 0 and j21 ∼ ∂2v/∂x∂y ≈ 0.
At separation the term j11 < 0 (j11 > 0 at reattachment) and continuity implies that
j11 = −j22. Therefore these critical points are classified as saddle points (two real
eigenvalues with opposite sign, or Q < 0, S1 < 0). A third free-slip critical point is also
present, where j11 = j22 = 0, the terms j12 and j21 are finite valued and the invariant
Q > 0. The resulting pair of pure complex eigenvalues defines a centre (point B3),
the streamlines following closed trajectories around it. The flow being homogeneous
in the spanwise direction, the Jacobian matrix in all critical points contains the
eigenvalue λ= 0 associated with this direction. The locus of the critical points on
different vertical planes gives rise to the separation and reattachment lines, and to a
‘vortex’ which is homogeneous in the third, out-of-plane spatial direction. The plane
streamlines emanating from the separation saddle are necessarily connected to the
reattachment saddle, engulfing the recirculation region.

This topology is structurally unstable and only possible in strictly two-dimensional
flows; any small three-dimensional perturbation will give rise to new critical points
and consequently to a new three-dimensional topology, regardless of the amplitude
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considered. The location of the new set of critical points is determined by the vanishing
of the disturbance spanwise velocity component, and their classification is determined
by the Jacobian of the perturbation.

For the sake of exposition of our argument, let us consider the Jacobian matrix
J of a three-dimensional flow field constructed by linearly superposing to the basic
flow a three-dimensional perturbation with small amplitude ε � 1, evaluated at the
recirculation centre. Evaluated at this critical point, the terms ∂u/∂x = ∂v/∂y =0, and
then j̄11 = j̄22 = 0. Moreover, ∂u/∂y > 0 and ∂v/∂x < 0. The total (i.e. basic flow plus
linear perturbation) Jacobian takes the form

J =

⎛
⎜⎝

0 j̄12 0

j̄21 0 0

0 0 0

⎞
⎟⎠ + ε

⎛
⎜⎜⎝

ĵ11 ĵ12 ĵ13

ĵ21 ĵ22 ĵ23

ĵ31 ĵ32 ĵ33

⎞
⎟⎟⎠ , (5.9)

where the elements j̄ij correspond to the basic flow and ĵij correspond to the
perturbation. The characteristic equation defining the eigenvalues of the disturbed
critical point, is

λ3 + λj̄12 · j̄21 + ε
{

j̄12 · j̄21 · ĵ33

}
+ . . . = 0. (5.10)

For consistency with the linearization assumption, higher order terms are not
retained. The equation considering only the order unity terms is the same as that for

the basic flow and yields the same eigenvalues (λ1,2 = ± i
√

j̄12j̄21 and λ3 = 0) discussed
earlier. The O(ε) terms affect the eigenvalues λ1 and λ2 as linearly small corrections,
necessary to verify the incompressibility condition; however, now λ3 = εĵ33 
= 0, and
as a consequence, R 
= 0. The classification of the critical point changes from the
degenerate two-dimensional centre to a three-dimensional unstable (stretching) focus,
when ĵ33 > 0, or a stable (compressing) focus when ĵ33 < 0. Similar developments can
be derived for the other critical points present in the basic flow, namely the separation
and reattachment points. The location of the critical points in the three-dimensional
flow fields varies as the perturbation amplitude is increased and new bifurcations on
the topology can appear. This is the case for the stationary global mode, discussed in
next section.

5.3. The stationary global mode

Three-dimensional flow fields are reconstructed superposing to the basic flow, v, the
leading stationary three-dimensional global mode at linearly-small amplitudes. The
basic flow corresponding to δ̄max = 3.25 and its leading stationary mode are considered
here. The choice of this case is made on account of the relatively simple wall-shear
distribution of the basic flow, shown in figure 1. As can also be seen in the same figure,
basic LSB flows corresponding to higher values of δ̄max have a wall-shear distribution
which is increasingly more involved, comprising new inflection points. The existence
of these inflection points has been seen to result in the appearance of additional
critical points as the disturbance amplitude increases, and subsequently to additional
topological bifurcations. However, all δ̄max cases share at least two topologies: the
lower-disturbance-amplitude reconstruction, corresponding to the onset of three-
dimensionality for infinitesimal disturbances and the higher-disturbance-amplitude
reconstruction corresponding to the final topology studied herein. The topological
bifurcations exerted by the global mode at higher δ̄max values will not be discussed
here, since the main features of the perturbed flow remain identical with those
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Figure 7. Surface critical points description for stationary the global mode with infinitesimal
amplitude (a) and with the higher amplitude (b).

presented in what follows, although the bifurcations themselves are substantially
more involved.

In order to construct the composite flow field, the eigenfunction is normalized
to have the maximum streamwise velocity component equal to unity, and is then
added linearly to the basic flow according to (3.1), with a given small amplitude
ε. The three-dimensional domain considered for the reconstruction of the flow is
Lx × Ly × Lz =(152, 370) × (0, 40) × (0, 4π/β), thus containing two complete spanwise
periods.

As mentioned earlier, the amplitude functions of the global mode recovered
presently exhibit the same characteristics of those known from the earlier work
(Theofilis et al. 2000). The streamwise velocity component û has a peak region that
extends from the maximum wall-normal height of the bubble until the reattachment
location in the basic flow. The maximum negative and positive streamwise disturbance
velocities are attained for the phase planes Θ = 0 and π, respectively. A spanwise
velocity component ŵ with amplitude of the same order of magnitude as û is
also present. The amplitude function changes its sign in some location between the
separation and reattachment lines, and attains its minimum and maximum in counter-
phase (i.e. in Θ = π/2, 3π/2 planes, respectively); the result is a fully three-dimensional
eigenmode.

No-slip critical points appear at the planes Θ = 0, π, where the spanwise velocity
vanishes. Referring to the schematic representation of figure 7, on the Θ = 0 separation
line ĵ33 < 0 and a stable node (L1: Q < 0, R < 0, S1 < 0) appears at the surface.
The centre present in the basic flow is transformed into an unstable focus (L5:
Q < 0, R > 0, S1 > 0): In the critical point ĵ33 < 0, continuity forcing the other two
terms in the diagonal to be positive. Conversely, in the reattachment line both j11 and
j33 change sign, and an unstable node (L3: Q < 0, R > 0, S1 < 0) appears. A similar
discussion shows that on the plane Θ = π saddle points appear both at the separation
(L2: Q < 0, R > 0, S1 < 0) and the reattachment (L4: Q < 0, R < 0, S1 < 0) lines, and
that the centre is replaced by a stable focus (L6: Q < 0, R > 0, S1 > 0).

It is worth mentioning that the flow topology described herein is true, independently
of the actual magnitude of the (small-) amplitude parameter used to reconstruct the
three-dimensional flow field. This is a consequence of the breakdown of the degenerate
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Figure 8. Critical points location in the Q–R plane. The arrows show qualitatively the
evolution of the critical points with increasing amplitude ε.

two-dimensional structure of the basic flow, according to the discussion of § 5.2. The
topology remains structurally equivalent if finite amplitudes are considered in the flow
reconstruction, while the qualitative description of the disturbed flow in the latter
case is more clearly visible. The deceleration of the basic flow (û < 0) increases locally
the streamwise extension of the reversed flow region. A fluid particle entering the
domain sufficiently near the wall in the plane Θ = π is attracted into the stable focus
describing a plane trajectory, and afterwards is expelled in the spanwise direction
following a stretching spiral. When the maximum or minimum ŵ-values are reached
(on the planes Θ = π/2 and 3π/2), the spiral focus turns from attracting streamlines
to repelling them, and the critical point on the sectional vertical plane is a centre. In
the region π/2 <Θ < 3π/2 the streamlines are repelled by the compressing (unstable)
focus, finally escaping the separation bubble and being convected downstream by the
mean flow.

The streamline trajectories and the location of the critical points for a flow
reconstruction using the global mode with an amplitude ε =0.1 is shown in the
upper part of figure 9. The amplitude ε used for the reconstruction allows a better
visualization of the topological changes exerted by the linear mode while remaining
topologically equivalent to a reconstruction with infinitesimal amplitude. In contrast
to the two-dimensional basic flow in which a separatrix exists, isolating the trajectories
inside the recirculation region and those entering the domain and escaping through the
outflow, here no such closed trajectories exist on account of the presence of the global
mode. The location and eigenvalues of the critical point is continuously modified
by the disturbance amplitude, as illustrated in figure 8 where the loci of the critical
points on the Q–R plane are shown. The topology remains structurally equivalent to
the one formerly described (points L) for a range of finite amplitudes. However, a
new local bifurcation of the flow topology appears when the disturbance amplitude
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Figure 9. (a, b) Streamlines of the flow reconstruction using the stationary global mode with
the lower amplitude. (c, d ) Same at higher amplitude. (a, c) Nature of the critical points.
(b, d ) Three-dimensional streamlines.

exceeds some finite value. To illustrate the new topology a flow reconstruction is done
considering a higher amplitude, ε = 0.2. Note that these parameter values are indicative
of the conditions at which the global eigenvalue problem has been solved presently
and would be different at different sets of parameters; of significance here is the
qualitatively different nature of the resulting three-dimensional flow field, as opposed
to the choice of amplitude parameters in the present linear context. The streamlines
trajectories and location of the critical points at the present conditions are shown
in the lower part of figure 9. The bifurcation occurs when two critical points, the
unstable node in the reattachment line (L3) and the unstable focus (L5) coalesce, giving
rise initially to a degenerate node focus (H35d: Q < 0, R > 0, S1 = 0) on the surface
streamlines, and afterwards to an unstable focus (H35: Q < 0, R > 0, S1 > 0). For this
critical point, the O(ε) terms are no longer small in (5.10), and the eigendirections
are not necessarily parallel to the coordinate planes. The separation stable node L2
disappears, and the other critical points L1, L4 and L6 become H1, H4 and H6. The
schematic representation of the critical points is shown in figure 7(b). The separation
line breaks and folds surrounding the new critical points at the wall: the so called U-
shaped separation (Hornung & Perry 1984; Perry & Chong 1987; Chong et al. 1990;
Dallmann et al. 1997) pattern appears. Counter-rotating swirling flow regions appear
symmetrically at both sides of the plane Θ = π, in which the surface streamlines are
repelled from the foci. The streamlines shown in figure 9(d ) are strongly reminiscent of
the simple U-shaped separation described in Perry & Chong (1987); even though the
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Figure 10. Streamlines of the basic flow plus stationary mode with the higher amplitude. (a–d )
z -planes for Θ = 0 (z = 0); Θ = 0.4 × π (z ≈ 9); Θ = π/2 (z ≈ 10.47), and Θ = π (z ≈ 20.94). Only
a region of the computational domain is shown. (e) Plane y = 0.

set of critical points describing the topology differs from the present, the trajectory of
the fluid particles attracted into the stretching vortex and then repelled transversally
is very similar. The surface streamlines along with vertical planes streamlines are
shown in figure 10.

6. Summary and discussion
It is known from critical point theory that any steady two-dimensional flow,

including the LSB boundary layer of interest here, is structurally unstable due to
the homogeneity assumption in the third spatial direction and the resulting singular
Jacobian matrix. As a consequence, any three-dimensional disturbance will give rise to
a three-dimensional flow field, regardless of the amplitude of such disturbance. Here,
the structural changes experienced by an incompressible LSB basic flow embedded in
a flat-plate boundary layer on account of the presence of its leading stationary global
mode (Theofilis et al. 2000) have been studied in detail.

Inverse boundary layer formulation Carter (1975) has been utilized in order to
construct steady laminar LSB flows with different amounts of reverse flow. As
shown in § 4, provided the Reynolds number is high enough (as the case is in
the present analysis), such model flows are consistent with the full Navier–Stokes
equations. BiGlobal instability analysis of the constructed LSB flow models showed
that the global mode can be self-excited for a finite range of spanwise wavenumbers;
the threshold for self-excitation obtained within the present model is urev ≈ 7 %.
The accuracy of the instability results was verified through DNS employing the
well-validated code of Lundbladh et al. (1994). Solutions of the associated adjoint
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eigenvalue problem have also been obtained, since they provide useful information
concerning the conditions at which the topologies exerted by the global mode can be
realizable. On the one hand, the adjoint eigenfunctions describe the spatial regions
at which the global mode is more receptive to external excitation. In the case of
the stationary three-dimensional global mode analysed herein the region of highest
receptivity is centred at the separation line and extends upstream. On the other
hand, the concept of structural sensitivity (Giannetti & Luchini 2007) shows that
the mechanism responsible for the self-excited global mode can be localized in space
as the region of highest coupling between the direct and the adjoint eigenfunctions;
in the present case this region is highly localized in the vicinity of the recirculation
region of the basic state. At recirculation levels above the self-excitation threshold
quoted, exponentially amplified perturbations exist in the absence of external forcing,
while below this threshold external forcing may continuously excite the same global
modes. Consequently, the topological changes discussed herein may be understood as
being the result of either the self-excited (unstable) global mode or a continuously
excited (stable) such perturbation.

The topological analysis of the composite flow field at low disturbance amplitude
shows that the stationary global mode gives rise to a periodic stretching and
compression of the spanwise vortex which defines the basic LSB and leads to
a spanwise modulation of the separation and reattachment lines. The perturbed
separation and reattachment lines are described by a set of connected no-slip (node
and saddle) critical points on the wall surface, as seen in figure 9(a, b). Identical
topologies have been observed experimentally in separation bubbles on a flat plate
(Perry & Fairlie 1975), either by oil-visualization techniques or by particle image
velocimetry on iced airfoils (Gurbacki 2003; Jacobs & Bragg 2006). In the latter
experiments two- and three-dimensional castings were used in order to reproduce the
ice accretions. Even though the spanwise modulation is much more apparent when the
three-dimensional castings were used, it is also present with two-dimensional casting;
Jacobs & Bragg (2006) suggested that the observed three-dimensionality may be a
demonstration of the existence of a global mode in the separation bubble.

A new topological bifurcation appears in the reconstructed three-dimensional flow
field as the amplitude of the global mode is increased beyond certain thresholds.
The separation and reattachment lines break periodically to form multiple symmetric
structures; the counter-rotating swirling regions shown in figure 9(c, d ) appear in
the wall streamlines. The resulting flow field shows strong resemblance to the ‘stall
cells’ (also referred to as ‘owl-face structures’ or ‘mushroom structures’) observed
in experiments on airfoils close to and beyond stall (Winkelmann & Barlow 1980;
Bippes & Turk 1982; Schewe 2001). A recent study of the appearance of these
spanwise periodic structures on the suction side of a stalled airfoil (Rodrı́guez &
Theofilis 2010) has identified stall cells as having their origin in the linear amplification
of the global mode of massively separated flow over the airfoil. In the present context
the appearance of cellular patterns is also explained by a structural bifurcation
which exists beyond certain values of the disturbance amplitude of the global
mode of LSB flow, but the structures on the flat plate are essentially different
from their counterparts on the airfoil in that no trailing edge is present in the flat
plate.

Further work could shed light on two issues. Firstly, three-dimensional DNS are
needed in order to quantify the precise role of nonlinearity in the scenario discovered
herein. Secondly, and probably more importantly, the relation of the discovered origin
of U-separation and spanwise periodic cellular patterns with their counterparts in
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turbulent flow needs to be explored. Both investigations are underway and results
will be reported in due course.

This paper is dedicated to the memory of U. Ch. Dallmann. The material is
based upon work sponsored by the Air Force Office of Scientific Research, Air
Force Material Command, USAF, under Grant number # FA8655-06-1-3066 to ‘nu
modelling s.l.’, entitled ‘Global instabilities in laminar separation bubbles’. The Grant
is monitored by Dr D. Smith of AFOSR (originally by Lt. Col. Dr Rhett Jefferies)
and Dr S. Surampudi of EOARD. The views and conclusions contained herein are
those of the author and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Air Force Office
of Scientific Research or the US Government. Computations have been performed
on the CeSViMa (www.cesvima.upm.es), MareNostrum (www.bsc.es) and JUGENE
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Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model
reduction and control in a separated boundary-layer flow using global modes. J. Fluid Mech.
579, 305–314.

Allen, T. & Riley, N. 1995 Absolute and convective instabilities in separation bubbles. Aerosp.
J. 99, 439–448.

Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in a flow
over a backward-facing step. J. Fluid Mech. 473, 167–190.

Bippes, H. & Turk, M. 1982 Half model testing applied to wing above and below stall. In Recent
Contributions to Fluid Mechanics (ed. W. Haase), pp. 22–30. Springer.

Blumen, W. 1970 Shear layer instability of an inviscid compressible fluid. J. Fluid Mech. 40, 769–781.

Boin, J.-P., Robinet, J.-C., Corre, C. & Deniau, H. 2006 3d steady and unsteady bifurcations in
a shock-wave/laminar boundary layer interaction: a numerical study. Theor. Comput. Fluid
Dyn. 20, 163–180.

Briley, W. R. 1971 A numerical study of laminar separation bubbles using the Navier–Stokes
equations. J. Fluid Mech. 47, 713–736.

Carter, J. E. 1975 Inverse solutions for laminar boundary-layer flows with separation and
reattachment. Tech. Rep. TR R-447. NASA.

Cebeci, T. & Cousteix, J. 2001 Modeling and Computation of Boundary-Layer Flows: Solutions
Manual and Computer Programs . Springer.

Cebeci, T., Keller, H. B. & Williams, P. G. 1979 Separating boundary-layer calculations.
J. Comput. Phys. 31, 363–378.

Chomaz, J. M. 2005 Global instabilities in spatially developing flows: non-normality and
nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.

Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional
flow fields. Phys. Fluids 2 (5), 765–777.

Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based
on global instability. J. Comput. Phys. 224, 924–940.

Dallmann, U. 1982 Topological structures of three-dimensional flow separations. Tech. Rep.
DFVLR-IB 221-82 A07.

Dallmann, U. C., Vollmers, H. & Su, W.-H. 1997 Flow topology and tomography for vortex
identification in unsteady and in three-dimensional flows. In IUTAM Symposium on Simulation
and Identification of Organized Structures in Flows, pp. 223 – 238, Lyngby, Denmark.
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